
A Multi-Query Optimizer for Monet?

Stefan Manegold, Arjan Pellenkoft, and Martin Kersten

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
{Stefan.Manegold,Arjan.Pellenkoft,Martin.Kersten}@cwi.nl

Abstract Database systems allow for concurrent use of several ap-
plications (and query interfaces). Each application generates an “op-
timal” plan—a sequence of low-level database operators—for accessing
the database. The queries posed by users through the same application
can be optimized together using traditional multi-query optimization
techniques. However, the commonalities among queries of different ap-
plications are not exploited.
In this paper we present an efficient inter-application multi-query opti-
mizer that re-uses previously computed (intermediate) results and elimi-
nates redundant work. Experimental results on a single CPU system and
a parallel system show that the inter-application multi-query optimizer
improves the query evaluation performance significantly.

1 Introduction

Much effort has been spent on designing and implementing algorithms for
database query optimization. Almost all current query optimizers are targeted
at finding the best (or at least a good) execution plan for a single query at a
time [SAC+79, IK90, GLPK94, VM96]. This is a reasonable approach for ad-hoc
querying and traditional applications firing isolated, but rather complex queries
at a time.

Modern database applications, such as data mining, however, strongly inter-
act with the DBMS by sending a stream of query batches. This stream typically
reflects a kind of navigation through the solution space of the data mining al-
gorithms. Its batches consist of rather simple queries to be solved. Depending
on the results of one step—consisting of a single query, or of a set of queries—
an interactive user or an automated mining algorithm decides how to proceed.
Typically, only a few parameters are changed in order to have a closer, i.e.,
more detailed look at a certain part of the database. Hence, it is very likely that
subsequent data mining steps are similar and can easily benefit from re-using
previously created intermediate results. This property can be used by applica-
tions to optimize access to a database at the cost of replicating parts of the
query optimizer code within each application.

Further, data mining systems are typically multi-user systems, i.e., several
users operate on the same database via the same or different mining applications.
? This work has been supported by the HPCN-CONQUER project.

Although the users act independently, formulating different queries, it is not
unusual that the database system has to execute identical basic (but expensive)
operations several times to satisfy the different requests. Unfortunately, this
property cannot be exploited by a single product/application, as it is outside its
scope of control.

Obviously, there are two sources of optimization that can be exploited if
multiple queries are considered: re-use of previously calculated (and cached)
intermediate results and elimination of redundant work. This calls for a new
type of inter-application multi-query optimizer that is able to detect and exploit
such optimization opportunities in a stream of individually optimized queries
that originate from various applications.

The issue itself, multi-query optimization (MQO), has received limited atten-
tion in the database research community. As query optimization was shown to be
NP-complete [IK84, SM97] it is not surprising that the problem of MQO is also
NP-complete [SG90]. MQO can therefor only be achieved using heuristics [Jar85]
or probabilistic techniques.

Early works [Fin82, Sel88] show that ad hoc queries can benefit from using
materialized results generated by earlier queries, even if only equivalent expres-
sions are considered. The savings can be considerable when compared to single
query processing. Shim et al. [SSN94] propose improved heuristics to search for
the global optimum in the state space that models all alternatives for evaluating
a batch of queries. Chakravarthy and Minker [CM86] use a multi-query graph for
representing multiple SPJ queries. Again, heuristics are used to identify common
subexpressions and transform the graph into an evaluation strategy without ap-
plying a search algorithm. Chen and Dunham [CD98] improve these heuristics
by, o.a., considering partial overlapping selection predicates.

All previous work on MQO considered a single application which allows for
a unified query abstraction level to perform common subexpression elimination.
However, a multi-query optimizer at the inter-application level, as we study in
this paper, cannot take advantage of these techniques.

In [RC88, AR92], frameworks for analyzing the MQO problem are proposed.
One of the issues addressed is that each type of (multi) query optimization should
be done at the appropriate level of abstraction — e.g., one level for determining
the appropriate join order and one to determine the join implementation. Fur-
thermore, they point out that a multi-query optimizer should at least perform
as well as a single query optimizer. Illustrative for this approach is the paper
[KDB94], where the MQO is done at the algorithm-level to exploit the re-use of
(temporary) hash tables.

In this paper we introduce a novel architecture to bring inter-application
query-optimizer back into the mainstream of research. The prime innovation is
to organize the query optimization problem into three tiers: Strategic optimiza-
tion, Tactical optimization and Operational optimization. At each tier, different
sources of optimization are exploited. The strategic tier uses the application
(-model) knowledge, such as foreign-key dependencies, semantic integrity con-
straints, and user-application focus to derive a query execution plan.

resultsGraph

... ...

Operational

optimization

optimization

Strategic
optimization

Tactical

Engine
Execution Result

Cache

Monet Database System

MIL stream merger & result dispatcher

Multi
Query
Optimizer

Dataflow

multiple users/applications

query

merged MIL stream

multiple MIL streams query results

optimized MIL stream

Figure 1. System Architecture

The tactical optimizer is geared at balancing the resources amongst com-
peting queries. This involves both recognition of commonalities amongst (inter-
and intra-application) requests and methods to exploit potential parallelism and
replication at the database back-ends.

The operational optimizer decides at run time which is the most suitable
algorithm for performing low-level database operation, e.g., it chooses between
a hash join or a nested loops join. Also the re-use of dynamically created hash
tables is done at this level.

In this paper, we present a multi-query optimizer for the middle tier (tactical
optimization) that is focused on but not limited to query workloads generated
by a specific, commercial data mining application. The optimizer keeps a history
of calculated intermediate results to re-use them in subsequent queries and it
detects common subexpressions of multiple queries to avoid redundant work.

Section 2 provides a short overview of the system and our focal data mining
product. Section 3 illustrates by an extensive example the opportunities for inter-
and intra-application in a data mining context. Section 4 reports on the results
obtained using the DD Benchmark, a metric for judging the capabilities of a
DBMS for interactive data mining. We conclude with a short outlook on the
extensions planned for the tactical optimizer.

2 System Architecture

Our system architecture in depicted in Figure 1. The Monet database engine
[BK95] is used as back-end server for multiple applications. The applications use
the Monet Interpreter Language (MIL) [BK99], an algebraic query language,

stroid
1000
1001
1002
1003
1004
1005
1006
1007

logical appearance

AIR
MAIL
TRUCK
AIR
SHIP
AIR
SHIP
MAIL

chr str
REG AIR
TRUCK
AIR
MAIL
RAIL
FOB
SHIP

0
1
2
3
4
5
6

3

chr

3
1
2
6
2
6

2
void encoding BAT

structures
physical data

1000
1001
1002
1003
1004

1006
1007

1005

10
10

11
11
11
12
13
13

oid int
1000
1001
1002
1003
1004

1006
1007

1005

04.75
11.50
10.20
75.00
02.50
92.80
37.50
14.25

oid float

8 bytes

1000
1001
1002
1003
1004

1006
1007

1005

0.10
0.00
0.00
0.00
0.00
0.10
0.10
0.00

oid float

8 bytes

0.10
0.00
0.00
0.00
0.00
0.10
0.10
0.00

10
10

11
11
11
12
13
13

width of relational tuple ~= 80 bytes

8 bytes

vertical fragmentation in Monet

price discntqty statusshipmodedate1 date2 comment
"Item" Table

04.75
11.50
10.20
75.00
02.50
92.80
37.50
14.25

AIR
MAIL
TRUCK
AIR
SHIP
AIR
SHIP
MAIL

intint int float float int varcharintfloat char(1)

tax flag

date date date char(27)

partsupporder

optimized BAT storage: 1 byte per column

Figure 2. Vertically Decomposed Storage in BATs

to communicate with the back-end engine. Each application first optimizes its
query individually on a logical level, e.g., algebraic operators are re-ordered to
minimize the data volume to be handled. Then, the application translates each
query into a sequence of MIL statements.

Our multi-query optimizer is placed between the applications and Monet.
It takes the unified stream of MIL statements from the applications as input
and produces an optimized stream of MIL statements to be sent to Monet for
execution. We will describe the multi-query optimizer in detail in Section 3.

2.1 Monet

Monet is a main-memory database kernel developed at CWI. It is targeted at
achieving high performance on query-intensive workloads, such as created by
OLAP or data mining applications. Monet uses the Decomposed Storage Model
(DSM) [CK85], storing each column of a relational table in a separate binary
table, called a Binary Association Table (BAT). A BAT is represented in memory
as an array of fixed-size two-field records [OID,value], or Binary UNits (BUN).
The OIDs in the left column are unique per original relational tuple, i.e., they
link all BUNs that make up a original relational tuple (cf. Figure 2). The major
advantage of the DSM is that it minimizes I/O and memory access costs for
column-wise data access which occurs frequently in OLAP and data mining
workloads [BRK98, BMK99].

2.2 Data Surveyor

Most existing data mining tools employ specialized data structures and algo-
rithms to manipulate mass data outside the DBMS. Data Surveyor of Data

Distilleries, however, integrates data mining with a DBMS using a 3-tier archi-
tecture:

GUIs taking the form of Java applets. Apart from a powerful expert data min-
ing interface, Data Surveyor provides pre-cooked user interfaces tailored to
special end-user requirements.

Data Mining Kernel containing tens of data-mining specific algorithms. This
component directs the data mining operations and translates a data mining
task into multiple DBMS queries.

DBMS back-end can be all SQL-speaking commercial (parallel) DBMSs. Fur-
ther, Monet can be used as high-performance back-end.

To facilitate the translation of a data mining task into DBMS queries, the
Data Mining Kernel uses a unique algorithmic framework that decomposes data
mining algorithms in three orthogonal dimensions:

– a modeling language for expressing hypotheses,
– a quality function for testing the quality of a hypotheses, and
– a search strategy for looking for interesting hypotheses.

2.3 DD Benchmark

The Drill Down Benchmark (short: DD Benchmark) is designed to measure
DBMS performance on a typical data mining query load. The benchmark is
formulated as a typical data mining task, which in turn is translated into DBMS
queries. The mining task mimics a customer loyalty application, a common and
prototypical data mining problem. In this task, a company wants to find profiles
for (un)reliable groups of customers.

The DD Benchmark uses decision rules as the modeling language to describe
such customers, where the rules are simple conjunctions of selections on the at-
tributes of the mining table. The quality of such rules is expressed as a confidence
interval and a beam-search algorithm is used to find interesting hypotheses.

The mining table contains 1 million customer records, consisting of 100 at-
tributes. Six attributes play a role in the mining task. A detailed description of
the DD Benchmark is available in [BRK98].

3 Multi-Query Optimizer

In this Section, we present an overview of the multi-query optimization facilities
embodied by our prototype optimizer.

3.1 Concept

Our optimizer mainly focuses on the following optimization potentials:

elimination of common (sub-)expressions Especially in a data mining sce-
nario, it is very likely that several queries to the same database will shared at
least some subexpressions. Evaluating identical subexpressions several times
(once per query) is of course redundant work. Hence, our optimizer identi-
fies such common subexpressions, schedules each subexpression only once for
evaluation and ensures that all queries can use the respective intermediate
result without any additional costs once it has been generated.

re-use of cached intermediate results Common subexpression may not
only occur among queries that are optimized at the same time. Rather, a
query might also require an intermediate result that has already once been
calculated for an earlier query. Hence, we keep intermediate results materi-
alized in main memory for later re-use.

parallelization Monet and MIL offer the possibility of parallel query execu-
tion. On a shared-memory multi-processor machine, for instance, a multi-
threaded Monet engine can evaluate multiple independent MIL statements
concurrently. Our optimizer takes care of that by identifying independent
statements and scheduling them for concurrent execution.

3.2 Example

As a simple example, consider a relation “customer” with four attributes (“gen-
der”,“age”,“marital”,“reliable”) and the following four SQL queries taken from
the DD Benchmark. Besides selections, the queries contain groupings and aggre-
gations, the most frequent tasks in data mining.

Q1: SELECT age, reliable, count(*)
FROM customer
WHERE gender = ’f’
GROUP BY age, reliable;

Q2: SELECT marital, reliable, count(*)
FROM customer
WHERE gender = ’f’
GROUP BY marital, reliable;

Q3: SELECT age, reliable, count(*)
FROM customer
WHERE gender = ’m’
GROUP BY age, reliable;

Q4: SELECT marital, reliable, count(*)
FROM customer
WHERE gender = ’m’
GROUP BY marital, reliable;

In Monet, the relation is stored in five BATs: “C gender”, “C age”,
“C marital”, and “C reliable”. The SQL queries translate to the following four
MIL programs. The “Vij” are variables that store the materialized intermediate
results.

P1: V11 := CTgroup(C age);
V12 := select(C gender,’f’);
V13 := semijoin(C reliable,V12);
V14 := CTgroup(V11,V13);
V15 := histogram(V14);
print(C age,C reliable,V15);

P2: V21 := CTgroup(C marital);
V22 := select(C gender,’f’);
V23 := semijoin(C reliable,V22);
V24 := CTgroup(V21,V23);
V25 := histogram(V24);
print(C marital,C reliable,V25);

P3: V31 := CTgroup(C age);
V32 := select(C gender,’m’);
V33 := semijoin(C reliable,V32);
V34 := CTgroup(V31,V33);
V35 := histogram(V34);
print(C age,C reliable,V35);

P4: V41 := CTgroup(C marital);
V42 := select(C gender,’m’);
V43 := semijoin(C reliable,V42);
V44 := CTgroup(V41,V43);
V45 := histogram(V44);
print(C marital,C reliable,V45);

In MIL, groupings are materialized in a cross-table BAT that holds in the
head column identifiers of all objects of interest, and in the tail a unique group
identifier. The “CTgroup” operators construct such cross-tables. The unary
“CTgroup” is executed on an [OID,value] BAT. It returns an [OID,OID] BAT
with the same head column as the input and a group-id in the tail column for
each BUN. Each group-id is chosen from the collection of OIDs from the head of
its group members. The binary “CTgroup” refines a cross-table by subdividing
the groups according to an additional [OID,value] BAT.

The “histogram” operation creates a histogram of the tail values of a BAT.
It returns a BAT with each distinct tail value of the input in its head column
and the number of occurances of that value in its tail column. Applied on a
cross-table, the histogram calculates the group sizes.

The “print” operation finally performs a multi-BAT equi-join on the head
columns, printing a multi-column table consisting of the respective tail columns.
In our example, “print” creates the required query result, a table that consists
of the grouping attributes and the group sizes.

The operations “CTgroup(C age)”, “CTgroup(C marital)”, “se-
lect(C gender,’f’)”, and “select(C gender,’m’)” occur twice creating pairwise
identical results V11≡V31, V21≡V41, V12≡V22, and V32≡V42. Hence,
“semijoin(C reliable,V12)” and “semijoin(C reliable,V22)” are identical as well

as “semijoin(C reliable,V32)” and “semijoin(C reliable,V42)”. The multi-query
optimizer has to detect these commonalities and avoid redundant work.

3.3 Implementation

The optimizer takes a stream of MIL statements as input. This stream is the
merged output of several applications (or multiple mining threads) and contains
a set of queries, each optimized in isolation. The optimizer stores the queries in a
dependency graph. Each distinct MIL statement makes up a node of the graph.
The nodes are connected by directed edges representing the data dependencies
between the nodes (i.e., the MIL statements). Hence, the dependency graph
forms a directed acyclic graph (DAG).

Elimination of Common Subexpressions At database startup time, the
dependency graph consists of a set of non-connected nodes. Each of these nodes
represents a persistent BAT stored in the database. When receiving input, the
optimizer adds a new node for each distinct MIL statement. The node then
represents the intermediate result created by that very MIL statement. Addi-
tionally, the optimizer adds edges to the dependency graph, representing the
dependency of an intermediate results on the parameters (i.e., persistent BATs
and previous intermediate results) of the respective MIL statement. To elimi-
nate common subexpressions, the optimizer identifies identical MIL statements
by their signature (i.e., operator name and parameters) and maps them to the
same node in the dependency graph. Hence, each distinct intermediate result
occurs only once in the dependency graph.

Figure 3 shows the dependency graph for our simple example. The equivalent
operations are identified and mapped to a single node.

Parallelization When the execution engine becomes idle, the optimizer scans
the dependency graph for independent statements to be executed next. Indepen-
dent statements are nodes that depend only on persistent BATs or on intermedi-
ate results already calculated. In other words, independent statements are ready
to be evaluated immediately. For each independent node, the optimizer checks
whether there is a linear path starting at the independent node, whose nodes
successively become independent as soon as their very predecessor in the path
is executed. If such a path exists, all nodes of that path (including the original
independent node) are gathered into a single task. Otherwise, the task consists
only of the original node. All statements within a task are evaluated sequentially
according to their dependencies. Gathering linear paths into sequential tasks en-
sures that intermediate results are used as soon as possible and preferably by the
same thread/CPU that created them. Parallelism is exploited by sending sev-
eral/all independent tasks to the execution engine to be evaluated concurrently,
each by a separate thread.

The grey-shadings in Figure 3 depict sequential tasks and parallel blocks. The
optimized MIL program is given in Figure 4. Operations within a sequential task

sequential tasks parallel blocks

C_reliable

C_gender

V13 V23 V33 V43

V32 V42V12 V22

V45

V44

printprint

V34

V35

V11 V31

C_age

print

V15

V14

V21 V41

C_marital

V24

V25

print

Figure 3. Sample Dependency Graph

(“{. . .}”) are are executed one after another. All operations or tasks within a
parallel block (“{| . . . |}”) are executed concurrently.

Re-use of Cached Intermediate Results The execution engine keeps all
intermediate results materialized in main memory. Hence, they are instantly
available for later re-use.1

By annotating the nodes in the dependency graph appropriately, the opti-
mizer keeps track of which intermediate results are already available and which
statements still need to be executed. Thus, the optimizer can easily detect, when
a new statement requests an intermediate result that has already been calculated
earlier.

4 Experiments

To analyze the benefits of multi-query optimization in a data mining scenario,
we run experiments using the DD Benchmark [BRK98]. The DD Benchmark
creates a typical Data Mining workload. It consists of 5 batches of queries, 133
queries altogether. All queries perform selections, groupings, and aggregations
on a subset of the attributes of a single relational table. The query batches mimic
the behavior of a beam-search algorithm to generate decision trees.

To run the DD Benchmark against the Monet database, we use the MIL
programs as generated by Data Distilleries’ mining tool Data Surveyor. In this
form, the whole DD Benchmark consists of some 1200 MIL statements altogether.
1 Currently, we implicitly assume an unlimited memory capacity. Cache management

facilities are to be added in the near future (cf. Section 5).

{|
{

V11 := CTgroup(C age);
}{

V12 := select(C gender,’f’);
V13 := semijoin(C reliable,V12);

}{
V32 := select(C gender,’m’);
V33 := semijoin(C reliable,V32);

}{
V21 := CTgroup(C marital);

}
|}{|

{
V14 := CTgroup(V11,V13);
V15 := histogram(V14);
print(C age,C reliable,V15);

}{
V34 := CTgroup(V11,V33);
V35 := histogram(V34);
print(C age,C reliable,V35);

}{
V24 := CTgroup(V21,V13);
V25 := histogram(V24);
print(C marital,C reliable,V25);

}{
V44 := CTgroup(V21,V33);
V45 := histogram(V44);
print(C marital,C reliable,V45);

}
|}

Figure 4. Optimized MIL Program

Table 1 compares the performance of executing the non-optimized and the
optimized MIL program running a single-threaded Monet server on an Intel
PentiumII 400 MHz based PC with 512 MB main memory.

The results show, that our optimizer is able to detect overlap among the
queries and eliminate common subexpressions (i.e., redundant work) efficiently.
The total optimization overhead is approximately 400 milliseconds, i.e., negli-
gible. The improvements increase with each additional batch of queries, as the
execution can then benefit from re-using previously calculated intermediate re-
sults. In batch 4, the number of instructions that is actually executed is reduced
by factor 5.1, the elapsed time it even reduced by factor 17.3. The overall im-
provement for the whole benchmark is factor 3.7.

Table 1. Experimental Results: sequential Monet Server on PC

batch non-optimized optimized improvement (factor)
stat’s time [ms] # stat’s time [ms] # stat’s time

0 14 1,940 14 1,940 1.0 1.0
1 18 4,864 12 3,339 1.5 1.5
2 345 43,350 135 17,444 2.6 2.5
3 444 38,621 114 7,059 3.9 5.5
4 447 27,802 87 1,608 5.1 17.3

0-4 1,268 116,578 362 31,898 3.5 3.7

Table 2. Experimental Results: sequential Monet Server on Origin2000

batch non-optimized optimized improvement (factor)
stat’s time [ms] # stat’s time [ms] # stat’s time

0 14 1,664 14 1,664 1.0 1.0
1 18 3,926 12 2,615 1.5 1.5
2 345 39,811 135 15,574 2.6 2.6
3 444 36,429 114 6,382 3.9 5.7
4 447 26,889 87 1,422 5.1 18.9

0-4 1,268 108,720 362 27,795 3.5 3.9

We ran the same experiments on an SGI Origin2000 with 24 MIPS R12000
CPUs (300 MHz) and 48 GB of main memory. Table 2 shows the results using
a single-threaded Monet server. The improvements are similar to those on the
PC.

Table 3 depicts the results using a multi-threaded Monet server, i.e., using
parallel execution. In the non-optimized version, each query forms a sequential
task. All queries within one batch are independent and can be evaluated concur-
rently. With increasing degree of parallelism, the improvement of the optimized
version over the non-optimized version slightly decreases. The reason being that
most improvement is gained from the fact that several statements can re-use
an intermediate result that is created only once. The Origin2000 is a ccNUMA
machine with distributed shared memory. Thus, memory access costs differ sig-
nificantly between local and remote memory access. With higher parallelism, it
becomes more likely, that a thread re-uses a result that has been created by
another thread, and is hence stored on another (remote) CPU board. But even
with 9 threads, the improvement is still factor 2.5.

Finally, Figures 5 and 6 show the speedup curves for the non-optimized and
the optimized version, respectively. Both figures show 6 speedup curves, 5 of
them representing the individual performance of each batch and the last one
representing the overall performance.

In both cases, batch 0 and batch 1 show rather limited speedup. This is
due to the fact that the two batches contain only 7, respectively 6, queries.
The other batches consist of more that 30 queries each, i.e., there is sufficient

Table 3. Experimental Results: parallel Monet Server on Origin2000

threads non-optimized optimized improvement
time [ms] time [ms] (factor)

1 108,720 27,795 3.9
2 54,944 15,598 3.5
3 39,089 12,221 3.2
4 30,288 9,451 3.2
5 25,874 8,893 2.9
6 21,934 7,549 2.9
7 19,793 7,670 2.6
8 18,587 7,072 2.6
9 18,808 7,436 2.5

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

sp
ee

du
p

number of threads

non-optimized

batch 0
batch 1
batch 2
batch 3
batch 4

 batch 0-4

Figure 5. Speedup: non-optimized

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

sp
ee

du
p

number of threads

optimized

batch 0
batch 1
batch 2
batch 3
batch 4

 batch 0-4

Figure 6. Speedup: optimized

potential for parallelism. Doing redundant work on local data in parallel, the non-
optimized version achieves near-linear speedup for the remaining batches and for
the overall performance. The optimized version, however, avoids redundant work.
Hence, several threads might re-use the same intermediate result, causing remote
memory access (see above). Although there is sufficient potential for parallelism,
the extra costs for remote memory access limit the achievable speedup on a
ccNUMA machine.

5 Conclusion and future research

In this paper, we showed that data mining applications provide some inter-query
optimization potentials that traditional query optimizers cannot exploit. We
proposed and implemented an application-independent inter-application multi-
query optimizer. The optimizer avoids redundant work by eliminating common

subexpressions and re-using cached intermediate results. Performance experi-
ments with the Drill Down Benchmark showed, that the optimizer yields sig-
nificant improvements of up to factor 4, while causing hardly any optimization
overhead.

The architecture provides an outlook on the novel three-tier optimization
scheme under development for the Monet DBMS. The underlying hypothesis
is that by breaking the optimizer into distinct tiers, we can both simplify the
optimization process at each level and further benefit from the inter- and intra-
application dependencies. This approach has already been shown beneficial at
the operational level in [BK95, BK99] and at the tactical level in this paper.

The research agenda for the tactical optimizer includes the following near-
term extensions:

cache management Main memory capacity—although constantly growing—
is not unlimited. Hence, the result cache will exceed (real) main memory
capacity, eventually. To prevent this, cache management is necessary to de-
cide when and which (old) results to discard in order to create space for
new results. We plan to investigate several strategies, mainly focusing on
taking into account the costs for (re-) creating the results and the benefits
of keeping certain results.

re-using supersets Currently, the optimizer is limited to identify and re-use
equivalent intermediate results, only. Additionally, it is also beneficial to
re-use the smallest superset of a requested intermediate result in case the
equivalent result is not available, provided that using the superset is cheaper
that using the original persistent BAT.

pattern rewriting Finally, we will extend the optimizer with ’peephole opti-
mization rules’ to detect certain patterns in the MIL sequence, respectively
in the dependency graph, in order to replace them with less expensive ones.
This approach releases the applications from taking care of any tactical op-
timization. Instead, applications only need to generate straightforward MIL
code. The tactical optimizer then takes care of optimizing the code before
actually executing it. In particular, when the Monet engine is extended by
a new operator that implements a sequence of operators more efficiently, it
will enable arbitrary applications to use the new implementation, without
changing the applications; the application even doesn’t have to know about
the existence of the new operator.

In general, many of the decisions that have to be taken by these extensions at
run time cannot be formulated as static rules or heuristics. Hence, we will provide
the optimizer with the required cost information to support its decisions.

Acknowledgements. We would like to thank Florian Waas for his contributions
to a prototype of the multi-query optimizer.

References

[AR92] J. R. Alsabbagh and V. V. Raghavan. A Framework for Multiple-Query
Optimization. In Proc. Research Issues on Data Eng.: Transaction and
Query Processing, Tempe, AZ, USA, February 1992.

[BK95] P. Boncz and M. Kersten. Monet: An Impressionist Sketch of an Advanced
Database System. In Proc. Basque International Workshop on Information
Technology, San Sebastian, Spain, July 1995.

[BK99] P. Boncz and M. Kersten. MIL Primitives For Querying a Fragmented
World. The VLDB Journal, 8(2), October 1999.

[BMK99] P. Boncz, S. Manegold, and M. Kersten. Database Architecture Optimized
for the New Bottleneck: Memory Access. In Proc. of the Int’l. Conf. on
Very Large Data Bases, pages 54–65, Edinburgh, Scotland, UK, September
1999.

[BRK98] P. Boncz, T. Rühl, and F. Kwakkel. The Drill Down Benchmark. In Proc.
of the Int’l. Conf. on Very Large Data Bases, pages 628–632, New York,
NY, USA, June 1998.

[CD98] F.-C. F. Chen and M. H. Dunham. Common Subexpression Processing in
Multiple Query Processing. IEEE Trans. on Knowledge and Data Eng.,
10(3):493–499, May/June 1998.

[CK85] G. P. Copeland and S. Khoshafian. A Decomposition Storage Model. In
Proc. of the ACM SIGMOD Int’l. Conf. on Management of Data, pages
268–279, Austin, TX, USA, May 1985.

[CM86] U. S. Chakravarthy and J. Minker. Multiple Query Processing in Deductive
Databases using Query Graphs. In Proc. of the Int’l. Conf. on Very Large
Data Bases, pages 384–390, Kyoto, Japan, August 1986.

[Fin82] S. J. Finkelstein. Common Expression Analysis in Database Applications.
In Proc. of the ACM SIGMOD Int’l. Conf. on Management of Data, pages
235–245, Orlando, FL, USA, June 1982.

[GLPK94] C. A. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Fast, Randomized
Join-Order Selection – Why Use Transformations? In Proc. of the Int’l.
Conf. on Very Large Data Bases, pages 85–95, Santiago, Chile, September
1994.

[IK84] T. Ibaraki and T. Kameda. Optimal Nesting for Computation N-Relational
Joins. ACM Trans. on Database Systems, 9(3), September 1984.

[IK90] Y. E. Ioannidis and Y. C. Kang. Randomized Algorithms for Optimiz-
ing Large Join Queries. In Proc. of the ACM SIGMOD Int’l. Conf. on
Management of Data, pages 312–321, Atlantic City, NJ, USA, May 1990.

[Jar85] M. Jarke. Common Subexpression Isolation in Multiple Query Optimiza-
tion. In W. Kim, D. S. Reiner, and D. S. Batory, editors, Query Processing
in Database Systems, pages 191–205. Springer-Verlag, 1985.

[KDB94] M. H. Kang, H. G. Dietz, and B. Bhargava. Multiple-query optimization at
algorithm-level. Data and Knowledge Engineering, 14(1), November 1994.

[RC88] A. Rosenthal and S. Chakravarthy. Anatomy of a Modular Multiple Query
Optimizer. Proc. of the Int’l. Conf. on Very Large Data Bases, pages 230–
239, 1988.

[SAC+79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access Path Selection in a Relational Database Management Sys-
tem. In Proc. of the ACM SIGMOD Int’l. Conf. on Management of Data,
pages 23–34, Boston, MA, USA, May 1979.

[Sel88] T. K. Sellis. Multiple-Query Optimization. ACM Trans. on Database
Systems, 13(1), March 1988.

[SG90] T. Sellis and S. Ghosh. On the Multiple-Query Optimization Problem.
IEEE Trans. on Knowledge and Data Eng., 2(2):262–266, Jun 1990.

[SM97] W. Scheufele and G. Moerkotte. On the Complexity of Generating Optimal
Plans with Cross Products. In Proc. of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 238–248,
Tucson, AZ, USA, May 1997.

[SSN94] K. Shim, T. Sellis, and D. Nau. Improvements on a Heuristic Algo-
rithm for Multiple-Query Optimization. Data and Knowledge Engineering,
12(2):197–222, March 1994.

[VM96] B. Vance and D. Maier. Rapid Bushy Join-order Optimization with Carte-
sian Products. In Proc. of the ACM SIGMOD Int’l. Conf. on Management
of Data, pages 35–46, Montreal, Canada, June 1996.

